Experimental investigation and proposed correlations for temperaturedependent thermal conductivity enhancement of ethylene glycol based nanofluid containing ZnO nanoparticles

Authors

  • Seyfolah Saedodin Faculty of mechanical engineering, Semnan University, Semnan, Iran
Abstract:

Experimental study of effective thermal conductivity of ZnO/EG nanofluid is presented in thisresearch. The nanofluid was prepared by dispersing Zno nanoparticles in ethylene glycol using asonicator and adding surfactant. Ethylene glycol based nanofluid containing ZnO nanoparticlewith a nominal diameter of 18 nm at different solid volume fractions (very low to high) atvarious temperatures was examined for the investigation. The thermal conductivity of nanofluidsis experimentally measured with THW method and it is found that the thermal conductivity ofnanofluids increase with the nanoparticle volume concentration and temperature. Also, based onexperimental values of thermal conductivity of nanofluid, three experimental models areproposed to predict thermal conductivity of nanofluids. The proposed models show reasonablyexcellent agreement with our experimental results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

experimental investigation and proposed correlations for temperaturedependent thermal conductivity enhancement of ethylene glycol based nanofluid containing zno nanoparticles

experimental study of effective thermal conductivity of zno/eg nanofluid is presented in thisresearch. the nanofluid was prepared by dispersing zno nanoparticles in ethylene glycol using asonicator and adding surfactant. ethylene glycol based nanofluid containing zno nanoparticlewith a nominal diameter of 18 nm at different solid volume fractions (very low to high) atvarious temperatures was ex...

full text

Experimental Investigation on the Thermal Conductivity and Viscosity of ZnO Nanofluid and Development of New Correlations

In this paper, the measurement of the viscosity of ZnO in ethylene glycol, propylene glycol, mixture of ethylene glycol and water (60:40 by weight), and a mixture of propylene glycol and water (60:40 by weight) and the thermal conductivity in ethylene glycol and propylene glycol as base fluids in the range of temperature from 25 ºC to 60 ºC are investigated. The results indicate that as the tem...

full text

experimental investigation on the thermal conductivity and viscosity of zno nanofluid and development of new correlations

in this paper, the measurement of the viscosity of zno in ethylene glycol, propylene glycol, mixture of ethylene glycol and water (60:40 by weight), and a mixture of propylene glycol and water (60:40 by weight) and the thermal conductivity in ethylene glycol and propylene glycol as base fluids in the range of temperature from 25 ºc to 60 ºc are investigated. the results indicate that as the tem...

full text

Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid

in ethylene glycol nanofluid J. Garg, B. Poudel, M. Chiesa, J. B. Gordon, J. J. Ma, J. B. Wang, Z. F. Ren, Y. T. Kang, H. Ohtani, J. Nanda, G. H. McKinley, and G. Chen Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA Materials an...

full text

An experimental investigation on effect of hybrid solid MWCNTs and MgO on thermal conductivity of ethylene glycol

In recent decade, the new advanced nanofluids, composed from various particles, have attracted the attention of researchers. This class of nanofluids, which can be prepared by suspending several types (two or more than two) of nanoparticles in base fluid, is termed as hybrid nanofluids. In this work, an experimental investigation on the effects of temperature and concentration of nanoparticles ...

full text

Investigation of the effect of temperature and concentration of ceramic nanoparticles on the thermal conductivity of water-ethylene glycol / nano Alumina-nano Graphen hybrid nanofluid

Nanofluid is a suspension obtained by adding nanoscale particles (100 nm) to a base fluid to improve heat transfer. In this study, the effect of temperature and concentration of nanoparticles consisting of Alumina nanoparticles and Graphene nanosheets on the thermal conductivity of a base fluid consisting of water and ethylene glycol was studied. Also, 0.2% by volume of oleic acid (OA) and 0.2%...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  47- 54

publication date 2014-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023